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Abstract 

Owing to axial divergence of the incident and diffrac- 
ted beams in a powder diffractometer, poles of reflect- 
ing crystallites are spread over a significant angular 
range in the axial plane, normal to the focusing plane 
of the diffractometer. The probability for a crystallite 
to reflect X-rays depends on Bragg angle and on 
inclination of the pole to the focusing plane. In order 
to calculate the number of reflecting crystallites 
( 'powder' supplement to the Lorentz factor) in an 
oriented sample, the orientation function of the crys- 
tallite must be multiplied by a probability function 
and integrated over the whole range of the pole's 
spreading caused by axial divergence. A probability 
function has been derived, and a 'powder'  supplement 
to the Lorentz factor has been calculated for samples 
with various degrees of preferred orientation. It is 
shown that, in the 20 range below 20 °, the angular 
dependence of the Lorentz factor deviates consider- 
ably from the conventional form (sin 0) -1 . The 
required formulation is given for the intensity correc- 
tion for low-angle reflections of oriented samples. 

Introduction 

The integrated intensity diffracted by the (hkl) plane 
of a randomly oriented non-absorbing powder speci- 
men is most generally expressed (Azaroff, 1968) as 

I=(KmHc) / (8zrR sin O)QV, (1) 

where K is the scale factor, m the multiplicity factor, 
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Hc the length of the detector slit, R the diffractometer 
radius, Q the reflecting power per unit volume ele- 
ment and V the sample volume. The term 
mHc/(87rR sin 0) is proportional to the number of 
crystallites properly oriented so as to diffract X-rays 
into the detector slit of height Hc. The (sin 0) -1 multi- 
plier of this term, which emphasizes the 0 dependence 
of the number of properly oriented crystallites, is of 
special interest here. In fact, (sin 0) -1 may be re- 
garded as the powder supplement to the regular 
single-crystal Lorentz factor equal to (sin20) -1 
[included in Q in (1)], bringing the Lorentz factor 
for powders to its usual form (sin 0 sin 20) -1. In the 
case of an oriented powder sample, an additional 
term equal to the pole density in the direction of the 
diffraction vector Po must be introduced into (1) with 
the same aim of accounting for the number of cor- 
rectly oriented crystallites. 

Thus, the corrected intensity is given by 

I~or = KoQVPoSp, (2)  

where Ko includes the scale factor K, numerical 
constants, instrumental constants Hc and R, and 
multiplicity factor m from (1), and Sp is the angle- 
dependent powder supplement to the Lorentz factor. 
For a randomly oriented sample, Sp = (sin 0) -1 and 
P o = l .  

Much effort has been devoted to acquiring Po values 
for various (hkl) planes using various approximations 
for the pole distribution function P (Roe & Krig- 
baum, 1964; Sturm & Lodding, 1968; Dollase, 1986). 
However, under certain experimental conditions, due 
to the finite size of the focal spot, sample and detector 
slit, crystallites with a considerable spread of orienta- 
tions contribute to the integrated intensity of the 
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diffraction peak. This results in a substantial instru- 
mental integration over the pole distribution function, 
which must be taken into account in the correction 
of the intensities of diffraction peaks. This effect is 
angle dependent, and in our further discussion we 
shall retain the term Po in (2) and all instrumental 
influence included in the value of the Sp powder 
supplement to the Lorentz factor. This matter has 
recently been treated by Reynolds (1986). However, 
he supposed that incident rays inclined to the focusing 
plane of the diffractometer illuminate a sample area 
with constant axial length. In fact, this length depends 
on the inclination angle, and Reynolds's calculations 
thus lead to a different formulation of the Lorentz 
factor and an estimation of it which is at variance 
with the results of the present paper. 

The relevant theory is presented below with an 
outline of the experimental conditions for which 
instrumental integration must be taken into account 
during correction for preferred orientation. 

Theory 

We will discuss only the axial texture with the axis 
normal to the sample plane and along the diffraction 
vector. Our presentation is thus restricted to the 
Bragg-Brentano geometry where the diffraction vec- 
tor and the sample normal are consistent. The 
condition imposed above is either naturally fulfilled 
for sedimented or compressed plate-like particles or 
can easily be achieved by specimen spinning around 
the sample normal. Under these conditions, the pole 
distribution is the function of a single variable - the 
latitudinal angle ~p which we shall measure from the 
direction of the sample normal. The pole density 
distribution P(~p) is subject to the normalization con- 
dition 

~r/2 

2zr ~ P(~)sin ~p d~p = constant. (3) 
0 

If we put P(0) -- 1 for a randomly oriented sample, 
then constant = 2rr and 

w / 2  

P(~p)sin ~p d~p = 1. (4) 
0 

Owing to the substantial axial divergence in powder 
diffractometers, the poles of diffracting crystallites 
are spread around the direction ~p = 0. This matter 
was discussed in depth in the early years of X-ray 
diffractometry (Alexander, Klug & Kummer, 1948; 
de Wolff, 1958; Kheiker & Zevin, 1963). We shall use 
the same approach in evaluating integrated intensities 
in oriented samples. In contemporary powder diffrac- 
tometers the focal spot, the irradiated part of the 
specimen and the receiving slit are of approximately 
equal height H - - 1 0 - 1 2 m m .  We consider X-rays 
diffracted by crystallites near the edge point of the 
sample P1 (Fig. 1). 

Suppose that an X-ray from the edge point of the 
focus F, strikes the sample at point P1 and is reflected 
to the edge point of the detector slit C1. The pole of 
reflecting crystallite P~ N, is coplanar with F, PI and 
C~P~ and its inclination to the focusing plane (XY 
plane in Fig. 1) is zero (~¢ =0).  Consider now an 
X-ray from another edge point of the focus F2 striking 
the same sample point P~ and reflecting to point C2 
of the receiving slit. The pole of the reflecting crystal- 
lite P, N2 has maximal inclination to the focusing 
plane ~max, where 

~Dma x = arcsin [H/(R2+ H2) 1/2 sin 0] 

- a r c s in  (H/R sin 0). (5) 

It must be emphasized that a crystallite with various 
pole orientations between ~p--0 and ~p = ~Pmax will 
reflect X-rays consecutively and not simultaneously. 
Indeed, if reflection conditions are fulfilled for a 
crystallite with a pole orientation P~ N2 (Fig. 1), they 
do not occur for a crystallite with pole P,N~(~p--0), 
because the angle fl ~ 0. However, during the diffrac- 
tometer scan, reflection conditions will be fulfilled 
consecutively for all crystallites with pole orientation 
between 0-< ~ <- ~max, and all of them will contribute 
to the integrated intensity of the diffraction peak. 
However, the frequency of the different pole orienta- 
tions is not constant and depends on angle ~p. Con- 
sider a reflecting crystallite at an arbitrary point P3 
with coordinate Z for which the pole to reflecting 

e ,  ~ × 

i; y/ 
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Fig. 1. Three-dimensional view of diffractometer geometry. F 1F 2 
focal line; Pt P2 sample; C, (72 detector slit. The axially divergent 
ray F2PtC2 represents diffraction from a crystallite with pole 
/)1N2, inclined at an angle ~Pmax to the sample normal. 

F~ , : I  

Fig. 2. Three-dimensional diffractometer geometry illustrating the 
definition of the probability function f(~0). 
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Table 1. Integration limits in the definition of the probability function f(  ~o ) 

sin ~o Zt Z2 Ut U2 
sin q~-< sin ~Oma./2 0 H / 2 -  W 0 2(H+ W)* 
sin y-<sin ~Omax/2 H / 2 -  W H -  W 2(H+ W ) -  H H 
sin ~o -< sin Crnax/2 0 H - W 2(H + W) - H H 

* W = (R sin O) sin ~. 

plane makes an angle ~o with the focusing plane (Fig. 
2). An incident ray from point Fs of the focus (coor- 
dinate U) is reflected to the point (73 of the detector 
slit. X-rays from other points of the focus will be 
diffracted by the same crystallite and contribute to 
the integrated intensity, provided they arrive at the 
detector slit anywhere between C, and (72. Let us 
calculate the effective length of the focal line for the 
particular arrangement (coordinate Z and angle ~0) 
of Fig. 2. These parameters will be invariant if we 
rotate F3C3 around the pole P3N3. Two extreme 
positions of this line F4C1 and F1C4 are defined by 
the edge points of the focus F1 and the detector slit 
C1. Thus, we can determine the lower U1 and upper 
/-/2 limits of the variation of the emitting point on the 
focus line. It is clear from Fig. 2 that U2 = H and 

U,= H - 2 [ H - ( Z  + W)] 
=2(Z+ W)-H,  

where W ~- (R sin 0) sin ~o. These limits are correct 
for any Z if 

W>_H/2 (or sin ~o---sin ~Om~x/2) 

and for Z >-H/2-  W if 

W-< H/2 (or sin ~o -< sin ~O~x/2). 

However, for small Z - < H ~ 2 - W  and W-<H/2 
(or sin ~o-<sin ~Pmax/2), edge points F2 and (72 will 
define the extreme positions of the F3C3 line, and the 
effective length of the focus line is confined between 
U~=0 and U 2 = 2 ( Z + W ) .  In order to define the 
probability function for the normals f(~o), we must 
account for all possible situations in which a particle 
with pole orientation ¢p diffracts X-rays into the 
receiving slit. In other words, we have to integrate 
over the length of both the focal spot and the speci- 
men. Coordinate Z always varies between Z = 0 and 
Z =  H -  W (Fig. 2). 

Thus, the probability function is defined as 
z 2 U 2 

f(~)= ~ dZ/H ; dU/H, (6) 
zl Ut 

where the integration limits are given in Table 1. 
Integration leads to the following expressions 

f ( ~ ) =  1 / 2 -  [sin ~o/(sin ~max)] 2 

if 0 -< sin ~ -< sin ~max/2, 

f ( ~ )  = ( 1 - s i n  ~/sin ~m~x) 2 (7) 

if sin ¢Pmax/2 -< sin ~ -< sin ~ m a x "  

For ~Oma x < 30 ° it might be supposed that sin ~o -~ ~o, 
and (7) may be replaced by 

f ( ~ p ) = l / 2 - ( ~ p / ~ O m a x )  2 i f  0--< ~p--< ~Pmax/2, 
(8) 

f(~o) = [1 - (~o/~Om,x)] 2 if rPmax/2 -< ¢p -< ¢Pmax. 

In fact, (7) and (8) produce very similar probability 
functions even for greater ~o angles, as can be seen 
from Fig. 3. 

In contemporary diffractometers the axial diver- 
gence is usually limited by two sets of Soller slits. 
The action of this assembly is defined mainly by its 
angular divergence t5 - the ratio of the distance 
between adjacent plates to the length of the assembly. 
If we extend the length of the Soller slits to be equal 
to the goniometer radius and retain the same diver- 
gence, then the focal spot, the specimen and the 
detector slit will be divided into parts of 8R. Thus, 
in respect of the axial divergence and the distribution 
of correctly oriented particles, a diffractometer with 
two sets of Soller slits is equivalent to one without 
Soller slits but with a shorter axial length of com- 
ponents H = R& Consequently, the maximum devi- 
ation of the normals is 

~ m a x  ~- arc sin (6/sin 0). (9) 

After establishing the probability function f(~o) we 
can extend (2) to the case of a diffractometer with a 
substantial axial divergence of incident and diffracted 
beams: 

~Oma x 

1= KoQV I P(~)f(q~) d~. (10) 
o 

1.0 

08 

06 

~4 

0.2 

0 

1 

0 0.5 i0 

Fig. 3. Probability funct ion f(~,).  (1) Simplified form (8); (2) 
precise form (7) for ¢~max = 600" 
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P0 from (2) is simply the pole density at ~o = 0, and 
(10) accounts for the number of properly oriented 
crystallites and replaces the product PoSp of (2). 

Theoretically, the maximum inclination of normals 
~Omax may approach 90 °. However, high ~0max angles 
occur at low Bragg angles when peak broadening due 
to axial divergence of the primary and diffracted beam 
makes accurate measurement of the integrated 
intensity difficult. If 2/30 is the minimum practical 
diffractometer setting, then the following constraint 
will be imposed on ~max (Fig. 1): 

~Omax--< arctan (H /R  sin flo); 

if, for example, 2/30 = 3 °, then ~max < 60 ° for various 
diffractometer arrangements. 

Discussion 

The significance of (10) compared with the conven- 
tional equation (2) depends on the relative width of 
the pole distribution functions and of the probability 
function f(~o). Equation (2) holds when the pole 
distribution width is much greater than the angle 
~0max; i.e. the variation of P(~0) is small within the 
angular range 0-~o-< ~0max. We start with a random 
sample [P(~o) = 1]. Integration in (10) with the proba- 
bility function in the form (8) leads to 

I= KoQV~o . . . .  (11)  

where ~ m a x  = 6/sin 0 and, combining the constant 
instrumental factor 6 with the scale factor constant 
Ko, we in fact recover the usual 'powder'  supplement 
to the Lorentz factor Sp = (sin 0) -1. However, if ~max 
exceeds 30 ° , the precise probability function must be 
applied in the form (7). The integration in (10) can 
be performed in this case also and results in Sp values 
slightly greater than 1/sin 0. For a diffractometer with 
two sets of Soller slits with divergence =2  °, the dis- 
crepancy is - 5 %  for 20 = 5 ° and drops to zero at 
20 = 10 °. 

In another extreme case of perfect preferred 
orientation (the single-crystal case), P (~)  may be 
regarded as a 6 function and integration in (10) will 
produce a constant (0-independent) term, giving the 
(obvious) value Sp = 1. 

The intermediate cases are those of strong orienta- 
tion and /or  broad probability function f(~o). Owing 
to the great increase in ~Omax towards low Bragg angles, 
the practical examples are found among materials 
giving low-angle reflections of which clay minerals 
are typical. Usual diffractometric practice is to pre- 
pare oriented clay mounts. The 001 (basal) reflections 
are found at scattering angles from 4-5 ° , i.e. in the 
range where f(~o) is especially broad. We have 
recently measured orientation functions for various 
clay mounts (Zevin & Viaene, 1990) and found that 
in this case as in many others (Lippmann, 1970; 
Taylor & Norrish, 1966; Reynolds, 1986) the orienta- 

tion function can be fairly well approximated by the 
Gaussian curve 

P = Po exp (-~o2/20"2). (12) 

Po from this equation is defined by normalization 
(4). Assuming sin q~ ~- ¢p - ~o3/6, we obtain 

P0 = [0"2(1 -o '2 /3) ]  - ' ,  (13) 

which is valid within a few percent for cr < 30 °. 
Although the real P(~o) function usually decays 

more slowly than the Gaussian curve, the difference 
is almost insignificant in the integration of (10). 

The standard deviation 0- [(12)] for various clay 
mounts varies from 10 to 25 °. Integration in (10) with 
the Gaussian orientation function (12) and the sim- 
plified probability function (8) leads to 

I= KoQVPoU, (14) 

where 

U = o" 2~/2--~{[ 1 + (0-/~max) 2 ] erf ( ~0max/X/~ 0-) 

--[ 1/2 + 2(0"/~max) 2] erf (~max/2X/~0-)  

+ (2/2~/2-~) (0-/~0max) 

X [exp (--~02max/20 "2) --exp (--~O2max/80"z)]}, 

where the error function erf (x) is defined as 

erf (x) = (2/vr~) i exp ( - f l )  dt, 
o 

and Po is defined in (13). 
If necessary, integration with the precise frequency 

function (7) could only be performed numerically. 
However, only small deviations from the approximate 
equation (14) would be anticipated due to the close- 
ness of the two forms (Fig. 3). 

The term U actually bears the supplementary pow- 
der Lorentz factor which may thus be represented as 

S,,=CU, (15) 

where C is the scaling Sp factor. 
The scaling is easily achieved given that at 0 = 90 °, 

Sp = 1 for randomly oriented powder samples as well 
as oriented samples. [The latter is always confined 
between Sp = (sin 0) -1 for a randomly oriented pow- 
der and Sp = 1 for single crystal.] For 0 = 90 °, ~0max = 8 
[(9)1 is much less than 0-, even for sharp preferred 
orientation. Calculation of U on this assumption 
leads to Umax = ( P m a x / 2  = 6/2. 

Thus, the scaling factor from (15), C = 2/6 and the 
'powder'  supplement to the Lorentz factor is calcu- 
lated by 

Sp=2U/6, 

where U is defined in (13). 
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Fig. 4. Lorentz factor for oriented samples. (a) Standard deviation 
of orientation function (r=10°; (b) (r=15°; (c) (r=25°; (1) 
Sp = 1/sin 0 curve; (2) dittractometer with two sets of Soller slits 
6 = 1°; (3) diffractometer with two sets of Soller slits 6 = 2.3°; 
(4) diffractometer without two sets of Soller slits, H = 10, R = 
173 mm. 

The values of Sp were calculated for various instru- 
mental arrangements and three different levels of 
preferred orientation - sharp (o-= 10°), medium (o-= 
15 °) and relatively low (tr = 25°). The results are pre- 
sented graphically in Fig. 4. The regular Sp powder 
factor (sin 0) -1 is also shown in this figure. The devi- 
ation from the (sin 0) -1 curve is indeed significant. 
However, this effect is confined to the range of scatter- 
ing angles 20 < 20 °. As would be expected, the devi- 
ation from Sp = (sin 0) -1 is especially significant for 
sharp texture and the high degree of integration 
achieved in diffractometers without Soller slits. 
However, even in the conventional diffractometer 
with two sets of moderate Soller slits (6 = 2.3 °, Philips 
PW1050 goniometer), the effect is rather pronounced 
even for mild texture (6 =25 ° ) at scattering angles 
lower than 10 °. Thus, we define conditions under 
which substantial instrumental integration over the 
pole distribution takes place. If this is the case, the 
intensity correction for preferred orientation should 
be made by (10) rather than by the simpler equation 
(2). 

Implementation of (10), of course, requires a 
knowledge of the pole orientation function P(q~) and 
the angle of maximal pole deviation (~max. The latter 
is derived from known experimental arrangements, 
for example, from (5) or (9). The orientation function 
P(q~) requires special consideration. Parameters of 
this function are usually recovered as a by-product 
of Rietveld structure refinement by powder diffraction 
data. As is known, an orientation function may be 
used for intensity corrections in subsequent cycles of 
refinement, according to procedures outlined in this 
work. Integration in (10) might, of course, also be 
done numerically and not necessarily analytically as 
was shown in this paper. For strongly oriented 
samples like oriented clay mounts, the orientation 
function must be evaluated by conventional methods 
of texture analysis. 
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